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The reliability of the Derjaguin approximation for the calculation of the mixing term between sterically
stabilized colloidal particles is studied. For this purpose, the steric potential obtained from the experiment of
Doroszkowski and Lambourne �J. Polym. Sci., Part C: Polym. Symp. 34, 253 �1971�� is regarded as an exact
result. Several analytical expressions corresponding to the mixing term of the steric potential are tested.
Vincent et al. �Colloids Surf. 18, 261 �1986�� obtained four of them using the Derjaguin approximation along
with different profiles for the volume fraction of segments in grafted polymer layers. As will be shown, the
exact calculation of the volume of interaction between two spheres with adsorbed polymer layers already leads
to a considerable improvement of the theoretical prediction for the simplest case of constant spatial distribution
of polymer monomers. This equation is also better than the four additional expressions that result from using
Bagchi’s formalism �J. Colloid Interface Sci. 47, 86 �1974�� with similar segment profiles. The deviations of
Bagchi’s formalism can be substantially minimized using Flory-Krigbaum theory instead of the Flory-Huggins
formalism for the calculation of the free energy of mixing. The equations derived here for the steric potentials
were derived for particles of distinct radii.
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I. INTRODUCTION

The prediction of the steric interaction between two
spheres covered by grafted polymers has been a subject of
study since the 1950s �1–11�. Earlier approaches divided the
calculation of the steric potential into two steps �3,5–7�. The
first one concerned the calculation of the spatial distribution
of polymer segments in the vicinity of a planar surface. The
second one dealt with the actual evaluation of the free energy
employing theoretical distribution functions of polymer seg-
ments �3,5–7�. Except for very few cases �2� the expressions
of the free energy were initially deduced for two planar sur-
faces, and required the use of the Derjaguin approximation
�12� in order to obtain the potential of interaction between
two spherical particles.

The behavior of polymers attached to a planar surface has
been successfully described by several theories, in particular
by the single chain mean field theory of Szleifer �13� and the
self-consistent approach of Scheutjen and Fleer �14�. The
scaling theory of de Gennes �15� was validated satisfactorily
by Tauton et al. �16� using the surface force apparatus �SFA�.
Unfortunately, there is no unified theory for the treatment of
the steric stabilization between suspended particles. This
situation result from the marked differences between the dis-
tributions of polymer segments attached to either planar sur-
faces or spherical particles.

The complexity of the first step referred to above can be
avoided by implementing simple mathematical models that
resemble the experimental behavior of polymers near a flat
surface �1,2,4,8–11�. In this respect, Vincent et al. �1� sug-
gested four simple expressions for the distribution of mono-

mers that can be exactly integrated following the Derjaguin
approximation. Thus, these equations are commonly used in
simulations of sterically stabilized particles �17–19�. Their
model is based on the earlier ideas of Smitham et al. �11� and
Meier �5� in which the steric interaction is visualized as the
consequence of two stabilizing contributions. The first one
has an osmotic origin and is caused by the interpenetration of
the adsorbed polymer chains corresponding to each interact-
ing surface. These chains “mix” in the region of overlap,
generating a high density of polymer. Depending on the af-
finity between the polymer and the solvent, the solvent mol-
ecules can migrate toward or away from the region of over-
lap. In the case of a good solvent, the high concentration of
polymer generates a flux of solvent molecules toward the
overlapping region causing the separation of the interacting
particles. This effect occurs during the whole range of the
steric interaction which begins at interparticle distances �h�
lower than twice the width of the adsorbed polymer layers
�2��. The second contribution, usually referred as “elastic,”
also has an entropic origin. It results from the elastic com-
pression of the adsorbed chains. This limitation of the avail-
able volume leads to a loss in the configurational entropy of
the chains, which is most significant when h��.

Recently, Oversteegen and Lekkerkerker �20� outlined the
importance of the exact calculation of the volume of overlap
for the depletion potential between large spheres in the pres-
ence of small spheres, disks, or rods. Since the depletion
potential results from the exclusion of the small particles
from the overlap region, the exact evaluation of this volume
determines the number of small particles that can be ex-
cluded. Consequently, the exactness of the theoretical poten-
tial and the phase behavior of the large particles can be er-
roneously approximated due to the underestimation of the
exact solution because of the neglected curvature. In the case
of the steric interaction, the repulsive force depends on the
amount of polymer segments that can be accommodated in-

*Corresponding author. Electronic address: alozsan@ivic.ve
†Electronic address: mgs@ivic.ve
‡Electronic address: guv@ivic.ve

PHYSICAL REVIEW E 72, 061405 �2005�

1539-3755/2005/72�6�/061405�13�/$23.00 ©2005 The American Physical Society061405-1

http://dx.doi.org/10.1103/PhysRevE.72.061405


side the overlap region. Since that quantity is already known
to vary significantly with the spatial distribution of segments,
it is expected that the accuracy of the steric potential might
be improved, avoiding the implementation of the Derjaguin
approximation. The results of this investigation support this
hypothesis.

In this paper we first use the expression of Vincent et al.
�1� for the mixing energy in order to approximate the mixing
interaction between two spheres of different radii stabilized
by adsorbed polymer layers. The interaction potential was
evaluated using the exact volume of the region of overlap
analytically calculated in this work. Since the integrals re-
quired are difficult to compute, the polymer layer was char-
acterized by a fixed width ��� and a uniform distribution of

polymer segments ��̄2�. This model will be further referred
to as the extended Vincent �EV� model. Additionally, we
have implemented the four analytic distributions of polymers
suggested by Vincent et al. �1� in the formalism of Bagchi
�2�, which computes the volume of overlap, avoiding the use
of the Derjaguin approximation. For this purpose, the depen-
dence of the mentioned distributions on the distance of ap-
proach between two planar surfaces was substituted by the
radial separation between the spherical particles. This second
model will be referred as the extended Bagchi �EB� model.

In order to test the accuracy of the theoretical predictions,
we use here the steric potential measured by Doroszkowski
and Lambourne �9,21�. Although several experiments have
evaluated the steric interaction between two planar surfaces
�22–24�, only a few studies deal with the case of spherical
particles. Indirect approximations of the steric potential be-
tween spheres are available �25�. However, up to our knowl-
edge there are only two experiments that directly determine
the steric interaction force between two suspended particles.
Doroszkowski and Lambourne �9,21� used a Langmuir
trough in order to measure the variation of the surface pres-
sure as a function of the available surface area for spheres of
polyacrylonitrile at a toluene/water interface. This allowed
them to compute the work done for compressing the polymer
layers of the particles. More recently, Leal-Calderon and co-
workers �26,27� used a magnetic field over drops of a ferrof-
luid in order to measure the steric potential. Under specific
experimental conditions the drops of this fluid can be aligned
in a chainlike formation and its potential calculated. Unfor-
tunately, the resulting empirical equation is a function of a
few effective variables, and does not show an explicit ana-
lytical dependence on several relevant parameters of the
steric potential.

II. GENERAL EXPRESSION FOR THE FREE ENERGY OF
MIXING

Consider two surfaces k and l either flat or curved �Fig.
1�a��, each one covered with a polymer layer of width �,
initially separated by a very long distance �h=��. The poly-
mer layers are already in contact with the solvent medium.
However, their entropy changes significantly when they are
brought together until they overlap �Fig. 1�b��, or even
closer, up to the distance where the elastic compression of
the chains begins �Fig. 1�c��. Let us call �GS�h� the change

in the free energy of the complete process of bringing to-
gether the spheres from infinity to a distance h. This thermo-
dynamic potential is usually considered to be the sum of two
contributions:

�GS�h� = �GM + �Gel. �1�

The first term on the right hand side, �GM, corresponds to
the change in the free energy of mixing of polymer segments
and solvent molecules. It has a nonzero value for distances
lower than 2� �h�2��. The second term �Gel �elastic�, ac-
counts for the decrease of the configurational free energy of
the polymer molecules due to the reduction of the available
volume as a consequence of the approach of the opposite
surface. It takes significant values for distances of the order
of � �h���.

According to Vincent et al. �1�, �GM can be calculated
using the well-known method employed by Flory and Krig-
baum �28,29� to evaluate the change in the free energy of
mixing when two polymer molecules of surfaces k and l are
brought together in volume dV, starting from an infinite dis-
tance of separation. The general expression obtained for this
term is

�GM�h� =
kBTVs

2

V1
�1

2
− ���A���2��

V

�	̂k
2 + 2	̂k	̂l + 	̂l

2�hdV

− �
V

	̂k,�
2 dV − �

V

	̂l,�
2 dV�, 0 � h � 2� . �2�

Here kB is the Boltzmann constant, T the absolute tempera-
ture, Vs the volume of a polymer segment, V1 the volume of
a molecule of solvent, � the interaction parameter of Flory-
Huggins, A the surface area of each interacting body, �� the
number of segments per unit area, and 	̂k and 	̂l the normal-
ized distribution functions of polymer over surfaces k and l,

FIG. 1. Steric interaction between two spherical particles cov-
ered by polymer layers. �a� h=�, �b� ��h�2�, and �c� 0�h��.
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respectively. Subscripts � and h refer to the distance of sepa-
ration between the surfaces.

However, it can be supposed that in the region ��h
�2�, the chains of polymer coming from the two surfaces
only interpenetrate each other �1�. In this case the initial
distribution of polymer does not change appreciably in the
overlap region, and the amount of solvent molecules adjusts
itself to the final available volume. That is, 	̂k,�= 	̂k,h and
	̂l,�= 	̂l,h. In this case, Eq. �2� can be simplified, yielding

�GM�h� =
2kBTVs

2

V1
�1

2
− ���A���2�

V

�	̂k	̂l��dV , �3�

� � h � 2� .

In Eqs. �2� and �3�, the integration is carried out over the
volume of overlap which is determined by the geometry of
the interacting bodies.

In the region 0�h��, compression of the chains un-
avoidably occurs along with the interpenetration of the poly-
mer molecules. In this case, the previous assumptions are not
valid and Eq. �2� must be evaluated.

Solving the integrals of Eqs. �2� and �3� for the case of
two planar surfaces covered by polymer layers, the free en-
ergy of interaction per unit area between flat plates �super-
script fp� results �� fpGM�d��. As usual, this can be related to
the free energy of interaction between two different spherical
particles by means of the Derjaguin approximation:

�SGM�h� = 2

akal

ak + al
�

h

2�

� fpGM�d�dd, h,� � a . �4�

In Eq. �4�, �SGM�h� is the energy of steric interaction
between two spherical particles of radii ak and al, d is the
distance of approach between the planar surfaces, and h is
the closest approach between the spherical particles.

The approximation above was initially applied for the
computation of forces that do not involve any volume of
overlap between the interacting bodies. Examples of these
are electrostatic and van der Waals forces. Unlike these
forces, the steric interaction is zero until the overlap of the
interacting polymer layers occurs. Equation �4� results from
the calculation of the energy of interaction between circular
rings defined at the surface of each sphere. These rings are
supposed to be flat surfaces. Hence, the polymer molecules
are implicitly assumed to be perpendicular to each ring, as
occurs in the case of two flat surfaces. However, it is clear
that the polymer molecules are oriented in the radial direc-
tion when they are attached to a spherical particle. As a re-
sult, the polymer density calculated in the region of overlap
is overestimated �see below�.

III. EV MODEL

This model was developed in this work to avoid the use of
the Derjaguin approximation. With this objective, we solved
the integrals of Eq. �2� explicitly evaluating them over the
overlap volumes indicated in Figs. 2�a� and 2�b�.

In the case of two spherical particles of radius ak and al,
and surfaces areas Ak and Al, the steric potential in the region
��h�2� �Fig. 2�a�� is equal to

�GM�h� =
2kBT

V1
�1

2
− ���AkAl����Vs�2�

Va

�	̂k	̂l��dV ,

�5�

� � h � 2� ,

where Va is the effective volume of overlap between two
spheres of different radii �Fig. 2�a��. Identification of the re-
gion of interaction in terms of a convenient set of variables
�Fig. 3�a�� leads to the establishment of the following limits
for the integral appearing in Eq. �5�:

�
Va

�	̂k	̂l��dV = �
0

2
 �
0

arccos�p/Rk�

��
H cos��−�Rl

2 + H2 cos2�� − H2�1/2

Rk

�	̂k	̂l���2

�sin��d� d d� �6�

where the distance p is indicated in Fig. 3�a�.
In the region 0�h�� the equation to be solved is similar

to Eq. �2�, except for the fact that in this case, particles of
different radii have to be considered:

FIG. 2. Model for the calculation of the mixing potential in EV
and EB models. �a� ��h�2�, �b� 0�h��.
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�GM�h� =
kBT

V1
�1

2
− ����Ak��Vs�2��

Vc

	̂k,h
2 dV

− �
Vk

	̂k,�
2 dV� + �Al��Vs�2��

Vc

	̂l,h
2 dV

− �
Vl

	̂l,�
2 dV�	 +

2kBT

V1
�1

2
− ���Ak��Vs�

��Al��Vs��
Vc

	̂k,h	̂l,hdV, 0 � h � � . �7�

In this last equation, the integrations should be carried out
over the volumes Vk, Vl, and Vc which can be defined by
identifying the overlap volumes on each sphere before and
after the actual overlap occurs �see Fig. 2�b��:

�
Vk

dV = �
0

2
 �
0

arccos�pk/Rk� �
H cos��−�Rl

2 + H2 cos2�� − H2�1/2

Rk

�2

�sin��d� d d�

− �
0

2
 �
0

arccos�qk/ak� �
H cos��−�Rl

2 + H2 cos2�� − H2�1/2

ak

�2

�sin��d� d d� , �8�

�
Vl

dV = �
0

2
 �
0

arccos�pk/Rk� �
H cos��−�Rl

2 + H2 cos2�� − H2�1/2

Rk

�2

�sin��d� d d�

− �
0

2
 �
0

arccos�Qk/Rk� �
H cos��−�al

2 + H2 cos2�� − H2�1/2

Rk

�2

�sin��d� d d� , �9�

�
Vc

dV = �
Vk

dV

− �
0

2
 �
0

arccos�Qk/Rk� �
H cos��−�al

2 + H2 cos2�� − H2�1/2

Rk

�2

�sin��d� d d� �10�

where distances pk, qk, and Qk are shown in Fig. 3�b�, and
can be evaluated from the following relations �where Rk
=ak+��:

pk =
Rk

2 − Rl
2 + H2

2H
, �11a�

qk =
ak

2 − Rl
2 + H2

2H
, �11b�

Qk =
Rk

2 − al
2 + H2

2H
. �11c�

In order to obtain an analytic solution for �GM�h�, it is
necessary to choose a simple form for the distribution func-
tions 	̂. Due to the complexity of the integrals we selected a
constant distribution function along the radial direction of
the particles. Accordingly,

�k�� − ak� = �̄2,k, �12�

FIG. 4. Comparison between EV model �closed symbols� and
the original Vincent model �open symbols� for different radii of
particles �ak=al, �=14.7 nm�: 1=150, 2=100, 3=50, and 4
=25 nm.

FIG. 3. Coordinate axes for the calculation of the mixing poten-
tial in EV and EB models. �a� ��h�2�, �b� 0�h��.
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�l��� − al� = �l���� = �̄2,l, �13�

where �̄2,k and �̄2,l are the average volume fractions of poly-
mers in each polymer layer. �� is the radial coordinate ��
−al transformed in such a way that it can be located on the
coordinate axis �−ak which is fixed to the center of mass of
particle k. In the case of a constant distribution of polymer
segments, the transformation does not affect the functional
form of the distribution because no explicit dependence of
the radial coordinate exists. Functions 	̂k and 	̂l can be ob-
tained from the above expressions, considering that, for the
region ��h�2�,

�̄2,k =
��VsAk

Va
, 	̂k,� =

1

Va
, �14�

�̄2,l =
��VsAl

Va
, 	̂l,� =

1

Va
, �15�

and, for the region 0�h��,

�̄2,k =
��VsAk

Vk
, 	̂k,h =

1

Vc
, 	̂k,� =

1

Vk
, �16�

�̄2,l =
��VsAl

Vl
, 	̂l,h =

1

Vc
, 	̂l,� =

1

Vl
, �17�

where the terms of type Vj refer to the volumes involved in
the interaction and ��Vs is the total volume of polymer per
unit area.

Introducing the expressions for 	̂ in Eqs. �5� and �7�, and
carrying out the integrals in each region for the case of simi-
lar polymer layers 	̂k= 	̂l, we obtained the following expres-
sions for the free energies of mixing:

�GM�h� =
4kBT

3V1
�̄2,k�̄2,l�1

2
− ���� −

h

2
�2�3�a + b�

2
+ 2� +

h

2

−
3�a − b�2

2�h + a + b��, � � h � 2� , �18�

and

�GM�h� =
kBT

V1
�1

2
− �� � ���̄2,k�2�Vk

2

Vc
− Vk� + ��̄2,l�2�Vl

2

Vc

− Vl� + 2�̄2,k�̄2,l�VkVl

Vc
�	, 0 � h � � , �19�

where

Vk =

��20�2b − 6�h2 + 8�2h − 12ah2 + 8�2a + 3�3 − 24bha + 12�ha − 12�hb + 36�ab�

12�h + a + b�
, �20�

Vl =

��12�hb − 24ahb − 12bh2 − 12�ha + 8�2h + 8b�2 − 6�h2 + 36b�a + 3�3 + 2a�2�

12�h + a + b�
, �21�

Vc =

�12�3a + 24�2ab + 6�4 + 12�3b − 4h3a − 12h2ab − 4h3b − h4�

12�h + a + b�
. �22�

In the above equations a=ak and b=al. For particles of equal
size �a=b� these equations are considerably simplified,
yielding

�GM�h� =
4
kBT

3V1
��̄2�2�1

2
− ���� −

h

2
�2�3a + 2� +

h

2
� ,

�23�

� � h � 2� ,

�GM�h� =
2kBT

V1
��̄2�2�1

2
− ���2Va

2

Vc
− Va�, 0 � h � � ,

�24�

where

FIG. 5. Model for the calculation of the denting potential in EB
model �0�h�2��.
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Va =

��− 24a2h + 36�a2 − 12akh

2 + 28�2a − 6h2� + 3�3 + 8h�2�
12�2a + h�

, �25�

Vc =

�24a2�2 − 12a2h2 + 24�3a − 8ah3 + 6�4 − h4�

12�2a + h�
.

�26�

Notice that Eq. �23� reduces to the one obtained by Vin-
cent et al. using the Derjaguin approximation when � ,h�a.
The same simplified equation was also obtained by Otewill
and Walker �8� using a different treatment. However, these
two researchers did not consider the appropriate expression
for region 0�h��, where considerable compression of the
polymer layer occurs.

Figure 4 shows a comparison between the results obtained
with the original Vincent model and the EV model for sev-
eral particle radii. As previously explained, the difference
between these two models is basically the use of the Der-
jaguin approximation. It is observed that this approximation
works fine at relatively long distances of approach. The clas-
sification of the values of h as long, intermediate, and short
used in this discussion depends on the relative magnitude of
h with respect to the width of the stabilizing surfactant layer
�where the steric interaction begins�. As Fig. 4 shows, the
Derjaguin approximation also works reasonably well at in-
termediate separations if the radius of the particles is suffi-
ciently larger than the width of the polymer length ��
=14.7 nm in Fig. 4�. This second observation is not surpris-
ing, since the mentioned condition is a typical requirement of
the Derjaguin formalism: � ,h�a0. However, two major de-
viations are also evident from Fig. 4: �a� at very short dis-
tances of separation there is a significant overestimation of
the repulsive potential in all cases; �b� for particles smaller
than 100 nm, there is also an underestimation of the potential
in the intermediate range of approach.

According to Eq. �23� which is valid when ��h�2�, the
steric potential is directly proportional to the volume of over-
lap. In the case of the Derjaguin approximation, the potential
is also proportional to a volume, but the latter is just an
approximation to the volume of overlap. As can be seen, the
dependence of Eq. �24� �0�h��� on the volume of overlap
is complex. The elastic contribution of the compressed
chains is significant, and the spatial distribution of the poly-
mer chains is more critical. In this region, the Derjaguin
approximation fails even if � ,h�a0. This is more noticeable
as the radius of the particles increases. These deviations of
the Derjaguin approximation are due to its application to a
repulsive force which depends on the volume of overlap. It is
clear that, if the polymer molecules are grafted on a planar or
a spherical surface, the distribution of monomer at a distance
h from the surface of the body is different in each case. As a
consequence, the polymer density is also distinct in the re-
gion of overlap. This deviation is more significant, if the
volume of overlap is not calculated exactly.

IV. THE EB MODEL

Bagchi �2� carried out the direct calculation of the free
energy of interaction between two identical spherical par-
ticles covered by polymer. For this purpose he evaluated the
volume of overlap without the use of the Derjaguin approxi-
mation. He assumed a constant distribution of polymer
around each particle, and used the expression of Flory and
Huggins in order to compute the free energy of mixing.

Bagchi supposed the existence of two different interaction
mechanisms, which may operate depending on the density of
polymer molecules around each particle. At low polymer

FIG. 6. Vincent model for different distributions of polymer
segments around two spherical particles: 1=constant, 2=linear, 3
=pseudohomopolymer, 4=pseudotails. EV model �curve 5� and DL
experiment �curve 6�. ak=al=100 nm, �=14.7 nm.

FIG. 7. Mixing contribution to the EB model for different dis-
tributions of polymer segments in the layers around particles: 1
=constant, 2=linear, 3=pseudohomopolymer, 4=pseudotails, and
DL experiment �curve 5�. ak=al=100 nm, �=14.7 nm.
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coverage, Bagchi supposed a “mixing” mechanism: the poly-
mer molecules coming from each particle adjust themselves
to the volume of the overlap region displacing a given
amount of solvent molecules toward the bulk. This mecha-
nism is similar to the one previously described in the Intro-
duction �Fig. 2�. The second mechanism, formerly referred to
as “denting,” takes place at high polymer coverage. In this
case the polymer molecules are “spontaneously” compressed
and do not overlap. In this case the particle surfaces ap-
proach without the overlap of their polymer layers. The free
energy of the system increases as each polymer layer is
forced to occupy a smaller volume due its the interaction
with the neighbor surface �see Fig. 5�.

The free energy of interaction for each mechanism de-
scribed above can be calculated using:

�GZ = ��GZ�F − 2��GZ�I. �27�

In Eq. �27�, superscripts I and F stand for the initial and
final states of the system, before and after the steric interac-

tion occurs. The subscript Z=M or D stands for the mecha-
nisms of mixing �M� and denting �D�. The free energy of
interaction for either process ��GZ�X is given by the expres-
sion of Flory and Huggins:

TABLE I. Expressions for the calculation of m2,j
X and m1,j

X �mix-
ing mechanism�.

Zone ��h�2�

Initial m2,j Vj / V̄2

m1,j
�Vj − m2,j

I V̄2�

V̄1

Final m2 m2,k
I +m2,l

I

m1 m1,k
I +m1,l

I −nm2
F

Zone 0�h��

Initial m2,j Vj / V̄2

m1,j
�Vj − m2,j

I V̄2�

V̄1

Final m2 m2,k
I +m2,l

I

m1 m1,k
I +m1,l

I −nm2
F− m̄1

m̄1 =
Ve + Vf − m̄2V̄2

V̄1

m̄2 =
Vf

V̄2

+
Ve

V̄2

TABLE II. Equation for the calculation of m2,j
X and m1,j

X �denting
mechanism �0�h�2���.

Initial m2,j Vd,j / V̄2

m1,j
Vd,j − m2,j

I V̄2

V̄1

Final m2 m2,k
I +m2,l

I

m1 m1,k
I +m1,l

I − m̃1,k− m̃1,l

m̃1,j = VD,j�1 − �̄2,j

V̄1

�

FIG. 8. Denting contribution to the EB model for different dis-
tributions of polymer segments in the layers around particles: 1
=constant, 2=linear, 3=pseudohomopolymer, 4=pseudotails, and
DL experiment �curve 5�. ak=al=100 nm, �=14.7 nm.

FIG. 9. �1� EB model predictions employing Eq. �41�; �2� EV
model predictions for �2=0.0340; �3� DL experiment. ak=al

=100 nm, �=14.7 nm.
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��GZ�X = NakBT�m1
X ln �1

X + m2
X ln �2

X + �m1
X�2

X� �28�

where the subscripts X= I or F and Z=M or D depending on
the state of the system and the stabilization mechanism. Na is
Avogradro’s number, and m1

X ,�1
X and m2

X ,�2
X are the number

of moles and the volume fraction of solvent molecules �1�
and polymer segments �2�, in the volume of overlap before
�X= I� or after �X=F� the interaction occurs �see Figs. 2 and
5�. Variables �1

X and �2
X are given by

�1
X = � m1

X

m1
X + nm2

X� , �29a�

�2
X = � nm2

X

m1
X + nm2

X� . �29b�

Here, n is the coordination number of the lattice of water
and polymer molecules used by Flory and Huggins in order
to describe the polymer solution. It is equal to the ratio be-
tween the volume of one polymer molecule �V2� and one
solvent molecule �V1�: n=V2 /V1.

In this way, �GZ is determined once m1 and m2 are speci-
fied for the initial and final states. Bagchi related these vari-
ables directly to the volumes involved during the overlap.
These volumes are obtained through geometric consider-
ations and are expressed as a function of the distance of
interaction between the particles, h, the extent of the polymer
layer, �, and the radius of the particles.

Figures 2 and 5 show the volumes involved during the
overlap of the polymer layers for the mechanism of mixing
and denting, respectively. Notice that the volumes can be
defined over each sphere before and after the actual overlap
occurs. For the mixing mechanism the volumes referred to
change during the approach of the particles, while for the
denting mechanism these volumes keep their geometric form
through all approximation distances.

In order to extend the theory of Bagchi, we incorporated
four different expressions for the distribution of polymer seg-
ments around each particle. These functions are similar to the
ones previously proposed by Vincent et al. �1� for flat plates,
except for the fact that we assumed a radial dependence of
the polymer density instead of a linear one. Vincent et al.
previously used a one-dimensional dependence in order to
describe the interaction between two flat surfaces covered by
polymer, prior to the application of the Derjaguin approxi-
mation. The distribution functions used in this work are

�1�� − aj� = �̄2,j, constant, �30a�

�2�� − aj� = 2�̄2,j�1 −
� − aj

�
�, linear, �30b�

�3�� − aj� = 3�̄2,j�1 −
� − aj

�
�2

, pseudohomopolymer,

�30c�

�4�� − aj� = �̄2,j�1 +
2�� − aj�

�
−

3�� − aj�2

�2 �, pseudotail,

�30d�

where �−aj is the radial distance from the surface of the
particles to the interaction zone. The radius of the particles is
aj, where j=k or l as before. �̄2,j is the volume fraction of
polymer �subscript 2� around sphere j.

Each of the functions above is used to compute the quan-
tities of polymer and solvent required for the evaluation of
the steric interaction according to Bagchi. For the case of
two polymer layers k and l surrounding spheres of radius ak
and al, Eq. �27� now becomes

�GZ = ��GZ,kl�F − ��GZ,k + �GZ,l�I �31�

where the subscript kl denotes the overlap of the polymer
layers k and l.

The terms appearing in Eq. �31� can be calculated follow-
ing the procedure outlined by Bagchi �2� once m1,j

X and m2,j
X

are specified �see the Appendix�.
The fundamental difference of our procedure with the

original method of Bagchi is that we use here functions of
polymer density instead of constant polymer distributions.
For this reason, the initial �I� amount of polymer contained
in a volume Vj �Figs. 2 and 5� that will be present in the
overlap region at distance of approach h, must be computed
from function �i��−aj�. This quantity ��m2,j

i �I� is given by

�m2,j
i �I =

�
Vj

�i�� − aj�dV

V̄2

=
Vj

i

V̄2

, �32�

where V̄2 is the molar volume of polymer, and index i speci-
fies the type of distribution function used. When i=1 �con-
stant distribution of polymer Eq. �30a�� and ak=aj, the ex-
pressions of Bagchi are recovered.

The integration over the volume of overlap suggested in
Eq. �32� is analogous to that of the EV model and depends
on the mechanism of stabilization �mixing or denting�. When
the distribution function is used, we found that the overlap
occurs in an effective volume that depends on the mathemati-
cal form of the distribution function:

Vj
i�1 = �

Vj

�i�1�� − a�dV = �̄2�
Vj

fn�1�� − a�dV = �̄2veff.

�33�

Thus, the interactions are not obtained from the geometrical
volume defined by the overlap of polymer layers such as is
the case in a constant-density distribution where

Vj
1 = �

Vj

�1�� − a�dV = �
Vj

�̄2dV = �̄2�
Vj

dV = �̄2vgeometric.

�34�

The volumes involved in the expressions �m2,j
i �X and

�m1,j
i �X for the mixing mechanism in the region ��h�2�

can be calculated using Eq. �35�:
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Vk
i = �

0

2
 �
0

cos−1�pk/Rk� �
H cos��−�Rl

2 + H2 cos2�� − H2�1/2

Rk

�i�	 − ak�

��2 sin��d� d d� . �35�

For the calculation of �m2,l
i �I, we can obtain volume Vl

i by
interchanging the subscripts k and l in the last equation. No-
tice that in this interaction region the volumes of overlap
identified before and after the actual superposition occurs
have the same geometrical form, Fig. 2�a�.

In the region 0�h�� �Fig. 2�b��, the expressions used
for the calculation of these volumes are

Vk
i = �

0

2
 �
0

cos−1�pk/Rk� �
H cos��−�Rl

2 + H2 cos2�� − H2�1/2

Rk

�i�	

− ak��2 sin��d� d d�

− �
0

2
 �
0

cos−1�qk/ak� �
H cos��−�Rl

2 + H2 cos2�� − H2�1/2

ak

�i�	

− ak��2 sin��d� d d� , �36�

Vf
i = �

0

2
 �
0

cos−1�Qk/Rk� �
H cos��−�al

2 + H2 cos2�� − H2�1/2

Rk

�i�	

− ak��2 sin��d� d d� , �37�

For the denting interaction the following equations are
obtained for the volumes Vd,k

i and VD,k
i �Fig. 5�:

Vd,k
i = �

0

2
 �
0

cos−1�pk/Rk� �
ak

Rk

�i�	 − ak��2 sin��d� d d� ,

�38�

VD,k
i = �

0

2
 �
0

cos−1�pk/Rk� �
P

Rk

�i�	 − ak��2 sin��d� d d� ,

�39�

where P= pk sec��.
The volumes Vl

i, Ve
i , Vd,l

i , and VD,l
i and the distances pl, ql

and Ql are obtained interchanging subscripts k and l in Eqs.
�35�–�39� and �11a�–�11c�, respectively. The explicit formu-
las calculated in this work for the volumes appearing in Eqs.
�35�–�39� are given in the Appendix �Tables III–V�.

This model �EB model� has the advantage that the geom-
etry is spherical right from the start. Unlike EV model, the
expressions obtained are analytic for each polymer distribu-
tion function corresponding to Eqs. �30a�–�30d�. However,
the most important disadvantage is that it does not follow the
formalism of Meier, which is widely accepted to treat the
mixing term of the steric potential. Instead, Bagchi applies
directly the Flory-Huggins expression

�GM = kBT�n1 ln �̄1 + n2 ln �̄2 + �n1�̄2� . �40�

Notice that the second term in the expression above is
equal to zero for grafted polymer layers, since it corresponds
to the configurational entropy of the center of mass of the
polymer molecules �30�. As a consequence, the potentials
calculated are likely to overestimate the true interaction po-
tential. A possible improvement of this formalism can be
achieved simply disregarding the second term in Eq. �40�.
This gives an expression for the energy of mixing similar to
the one of Flory and Krigbaum:

�GM = kBT�n1 ln �̄1 + �n1�̄2� . �41�

TABLE III. Vk
i for the calculation of the amount of polymer and solvent �mixing mechanism ���h�2���. In the equations below a

=ak and b=al. To obtain the volumes Vl
i interchange subscripts k and l and the radii a and b.

�i Vk
i

�1

�̄2,k

12

�h − 2��2�h2 + 4ha + 4hb + 4h� + 12ab + 4b� + 4a��
�h + a + b�

�2

�̄2,k

30

�2� − h�3�2h2 − 2�2 + 10b� + 7�h + 20ab + 5hb + 10ah�
��h + a + b�

�3

�̄2,k

20

�2� − h�4�h2 − 2�2 + 4�h − 2a� + 6b� + 6ha + 10ab + 2hb�
�2�h + a + b�

�4

�̄2,k

60

�2� − h�3�4�3 + 12�2a + 4�2b − 2�2h + 14�h2 − 2�ha + 26�hb + 20�ab + 3h3 + 18h2a + 6bh2 + 30hab�
�2�h + a + b�
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V. COMPUTATIONAL DETAILS

Using a Langmuir trough, Doroszkowski and Lambourne
�DL� measured the variation of the surface pressure ��� as a
function of the total interfacial area �At� for spheres of poly-
acrylonitrile suspended at the toluene/water interface. The
particles were stabilized sterically by polystyrene tails and
the work of compression calculated from the product �At.
The determination of the potential was possible assuming
that the number of contacts of one sphere at the interface was
equal to six as in an hexagonal close-packed arrangement.
The resulting experimental curve is shown in Fig. 6 �curve
5�.

In order to parametrize the theoretical expressions for the
EV and EB models, the following experimental values were
used �11�: ak=al=100 nm, V2=0.91 cm3/g, V1
=107 cm3/mol, MW=6000 g/mol, �=5.2�10−8 g /cm2, �
=14.7 nm, and �=0.468.

The average volume fraction of polymer around each par-
ticle was calculated following Eq. �42�:

�̄2,j =
3aj

2�V2

�3 + 3aj�
2 + 3�aj

2 . �42�

In this equation the total amount of polymer is obtained by
multiplying the surface excess of the polymer molecules by
the area of the drops. The volume fraction can be calculated
using the molar volume of the polymers �V2� and the volume
of the polymer shell around each particle �denominator of
Eq. �42� divided by 3�. The volume fraction obtained was
�2=0.0279. The average molar concentration of polymer
around each particle was equal to c= �̄2 /V2, and the “coor-
dination number of the lattice” was equal to n=V2 /V1.

TABLE IV. Vk
i for the calculation of the amount of polymer and solvent �mixing mechanism �0�h����. In the equations below a

=ak and b=al. To obtain the volumes Vl
i interchange the subscripts k and l and the radii a and b.

Vk
1


��̄2,k

12

�36a�b + 8�2h + 12�ha − 12�hb − 6�h2 − 24hab − 12h2a + 20�2b + 8a�2 + 3�3�
�h + a + b�

Vf
1


�̄2,k

12

�h − ��2�h2 + 4hb + 4ha + 2h� + 12ab − 3�2 − 4a� + 8b��
�h + a + b�

Vk
2


��̄2,k

30

�7�3 + 25a�2 − 30h2a + 20ha� − 10h2� + 80ab� − 20hb� − 60hab + 30b�2 + 10h�2�
�h + a + b�

Vf
2


�̄2,k

30

�h − ��3�5a� − 2h2 − 5ha − 10hb − h� − 20ab − 10b� + 3�2�
��h + a + b�

Vk
3


��̄2,k

20

�4h�2 + 14b�2 + 18a�2 + 10ha� − 10hb� − 40hab + 50ab� − 20h2a + 4�3 − 5h2��
�h + a + b�

Vf
3


�̄2,k

20

�h − ��4�h2 + 6hb + 2ha + 10ab − 2a� + 4b� − �2�
�2�h + a + b�

Vk
4


��̄2,k

60

�16�3 + 46a�2 − 50hb� − 120hab + 50ha� + 170ab� + 28h�2 + 78b�2 − 60h2a − 25h2��
�h + a + b�

Vf
4


�̄2,k

60

�h − ��3�− 3h3 − 6h2a − 18bh2 − 5�h2 − 8�ha − 34�hb − 30hab − �2h − 14a�2 − 50�ab − 28�2b + 9�3�
�2�h + a + b�

LOZSÁN, GARCÍA-SUCRE, AND URBINA-VILLALBA PHYSICAL REVIEW E 72, 061405 �2005�

061405-10



VI. COMPARISON BETWEEN EV AND EB MODELS

Figure 6 shows the prediction of the Vincent model for
constant �curve 1�, linear �curve 2�, pseudohomopolymer
�curve 3�, and pseudotail �curve 4� polymer distributions.
The formulas used for the calculation of these plots are the
ones previously reported by Vincent et al. �1�. They were
calculated from Eq. �2� using different theoretical polymer

distributions �constant �C�, pseudohomopolymer �PH�, linear
�L�, and pseudotail �PT�� along with the Derjaguin approxi-
mation. As can be observed, all the potentials lie fairly close
to the experimental measurement of Doroszkowski and Lam-
bourne. However, all of them underestimate the experimental
measurement at intermediate distances of approach, and
drastically overestimate it at very close separations. Out of

TABLE V. Vd,k
i and VD,k

i for the calculation of the amount of polymer and solvent in the denting mechanism �0�h�2��. In the equations
below a=ak and b=al. To obtain volumes Vd,l

i and VD,l
i interchange subscripts k and l and radii a and b.

Vd,k
1


��̄2,k

3

�3a2 + 3�a + �2��h + 2���h + 2b�
�h + a + b��a + ��

VD,k
1


�̄2,k

24

�h − 2��2�h2 + 2hb + 6ha + 4h� + 6ab + 6a� + 2b� + 6a2��h + 2b�2

�h + a + b�3

Vd,k
2


��̄2,k

6

�6a2 + 4�a + �2��h + 2���h + 2b�
�h + a + b��a + ��

VD,k
2


�̄2,k

48

�h − 2��3�h + 2b�3�h − 2a��2a + 2b + h + 2��
��h + a + b�4

Vd,k
3


��̄2,k

10

�10a2 + 5�a + �2��h + 2���h + 2b�
�h + a + b��a + ��

VD,k
3


�̄2,k

320

��h − 2��4�h + 2b�4��6hb + 10ab − 2b� + 3h2 + 10ha + 4�h + 10a2 + 10a��
�2�h + a + b�5

Vd,k
4


��̄2,k

30

�30a2 + 25a� + 7�2��h + 2���h + 2b�
�h + a + b��a + ��

VD,k
4


�̄2,k�h − 2��3�h + 2b�3�4hb2� − 36h2b2 − 60hb2a − 40b2a� − 24b2�2 − 36h3b − 66h2b� − 90h2ab − 44hb�2 − 280hab� − 60ha2b − 200b�a2�
960�2�h + a + b�5

+

�̄2,k�h − 2��3�h + 2b�3�− 40ab�2 − 9h4 − 30h3a − 34�h3 − 56h2�2 − 30h2a2 − 170h2a� − 180ha�2 − 260ha2� − 160�2a2 − 160�a3�

960�2�h + a + b�5
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the four polymer distributions tested, the prediction of the
constant polymer distribution �C� lies closer to the experi-
mental curve at these two distances. Instead, PH, L, and PT
fall closer to the experimental measurements at intermediate
separations. Figure 6 also shows the prediction of the EV
model proposed for a constant polymer distribution. The EV
curve has a similar shape to the one of the DL potential: it
follows the qualitative variation of the DL �curve 6 in Fig. 6�
presenting a finite limit for h=0 �VS=25kBT�.

On the other hand, the predictions of the extended Bagchi
model are substantially displaced to longer distances of ap-
proach for all polymer distributions proven �Figs. 7 and 8�.
In this case, the PH distribution falls closer to the DL curve,
while the constant polymer distribution C is the one that lies
farther away.

The nature of the deviation of the EB model with respect
to DL can be understood by looking at Eqs. �40� and �41�.
The expression of mixing calculated from Flory-Huggins
theory has an additional term as compared to the one from
Flory-Krigbaum theory. Elimination of that additional term is
equivalent to using Flory-Krigbaum theory within the EB
formalism. The result from this procedure is shown in Fig. 9.
This prediction of EB for the constant polymer distribution
lies very close to the DL measurement, and follows the shape
of the experimental curve along the whole range of the po-
tential.

In the case of EV, the nature of the deviation is very
different. Figure 9 also shows the prediction of the EV model
for an adjusted value of the average polymer distribution
around each particle. Using �̄2=0.0340 instead of 0.0279
yields curve 2 in Fig. 9. The curve basically coincides with
the prediction of the EB model when Flory-Krigbaum for-
malism is used.

VII. CONCLUSION

In this paper possible extensions of the work of Vincent
�EV� and Bagchi �EB� were presented. Explicit analytic ex-
pressions for the mixing contribution of the steric potential
are put forward for the case of two spheres of different radii.
These expressions avoid the use of Derjaguin approximation.

The use of experimental parameters in the EV model
gives a fair prediction of the DL curve. However, an adjust-
ment of the volume fraction of polymer is required in order
to reproduce the experimental results. This is an indication
that a different polymer distribution might be able to repro-
duce the experimental curve without further adjustment.

On the other hand, the EB model is only able to approach
the experimental measurements of DL if the formalism of
Flory-Krigbaum is used to calculate the mixing term. In this

case, a constant polymer distribution produces a prediction
of a similar quality to that of the EV model. Otherwise, the
EV model works considerably better than the EB one.

APPENDIX: CALCULATION OF PARAMETERS FOR THE
EB MODEL

The calculation of �GZ employing Eq. �31� requires the
specification of each term included in Eq. �28�. These are
determined once the amounts of polymer �m2

X� and solvent
�m1

X� are given for the overlap region, before and after the
actual overlap of the polymer layers occurs �Figs. 2 and 5�.
Those quantities are calculated in a different manner depend-
ing on the mechanism of stabilization �mixing or denting�. In
addition, in the case of mixing it must be taken into account
that the volume of overlap changes when the separation dis-
tance goes from ��h�2� to 0�h��.

The equations that allow the calculation of �m2
X� and �m1

X�
are summarized in Tables I and II for the different cases
outlined above. These equations were written following the
original work of Bagchi �2�. The difference between our
equations and the original ones is that the volume of overlap
is calculated considering several distribution functions other
than the constant one. In Tables I and II, the superindex i has
been omitted for simplicity. However, this index identifies
the distribution function. Thus, it should be kept in mind that
there exist a similar set of equations as the ones given in
Tables I and II for each distribution function of polymer
segments.

The quantity m2
I �I=initial� is the amount of polymer that

there is in the volume over which the overlap will occur in
each sphere �j=k or l�. This is true for the cases of mixing
and denting. The variable m1

I stands for the amount of sol-
vent that can be accommodated in the same region, once the
polymer has been distributed. The variable m2

F �F=final� is
equal to the sum of the initial amount of polymer contained
in the overlap region of each sphere, before the overlap oc-
curs. The procedure for the calculation of m1

F is similar to
that of m1

I , the difference being that the volumes that must be
taken into account are different. As a consequence, the equa-
tions of Tables I and II for these two cases are distinct.

The volumes that appear in the equations of Tables I and
II are given by Eqs. �35�–�39� in integral form, and their
explicit analytical expressions are given in Tables III–V for
each distribution function employed in this work. When the
constant distribution function is used �i=1� the calculation of
�GZ is equal to the one originally published by Bagchi �2�,
except for the fact that the present equations were developed
for particles of different radii.
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